Brain Bioenergetics

neuron photobiomodulation

Neurons are cells that contain mitochondria.

By delivering photons to a light-sensitive enzyme(cytochrome c oxidase) found within the mitochondria, this triggers a cascade of beneficial and energizing cellular events.

  • 2018 pilot trial on brain photobiomodulation using the Vielight Neuro Gamma, by the University of California San Francisco
    (Link, Photomedicine and Laser Surgery)
  • 2019 research study on modulating brain oscillations using the Vielight Neuro Gamma, by the Temerty Centre for Therapeutic Brain Intervention, Toronto
    (Link, Nature Scientific Reports)

Photonic Diffusion

photobiomodulation brain

Electromagnetic radiation within the NIR range carries the most potent form of photonic diffusion through tissue, blood and brain.

The 810nm wavelength exhibits the least photonic scattering and absorption by blood and water in the entire electromagnetic spectrum.

Clinical studies have shown that NIR radiation of sufficient power density is capable of diffusing through the scalp, skull and brain.

The Vielight Intranasal Advantage

Paolo Cassano, Anh Phong Tran, Husam Katnani, Benjamin S. Bleier, Michael R. Hamblin, Yaoshen Yuan, and Qianqian Fang “Selective photobiomodulation for emotion regulation: model-based dosimetry study,” Neurophotonics 6(1), 015004 (7 February 2019).

Vielight’s patented intranasal stimulation technology and microchip LED technology are powerful tools for brain photobiomodulation.


The intranasal channel lacks hair and skin, which are natural barriers for light energy.

Being just 3 inches from the brain, the intranasal channel is the most efficient channel for photobiomodulating the deeper, ventral brain area.

These deep structures within the brain’s core have important functions, such as long term memory and hormonal regulation.

In-Depth Summary

Mechanisms of Brain Photobiomodulation

Brain photobiomodulation (PBM) utilizes red to near-infrared (NIR) photons to stimulate the cytochrome c oxidase enzyme (chromophore/complex IV) of the mitochondrial respiratory chain because this enzyme is receptive to light energy. This outcomes are an increase in ATP synthesis, leading to the generation of more cellular energy. Additionally, photon absorption by ion channels results in release of Ca2+ which leads to the activation of transcription factors and gene expression.

There are several mechanisms associated with promoting physiological change through photobiomodulation therapy (PBMT). The wavelengths primarily used with PBM is within the near-infrared range of the electromagnetic spectrum with a sufficient power density. When hypoxic/impaired cells are irradiated with low level NIR photons, there is increased mitochondrial adenosine tri-phosphate (ATP) production within their mitochondria.1, 2 Another change is the release of nitric oxide from the hypoxic/impaired cells. Neurons are cells that contain mitochondria and nitric oxide.

In hypoxic neuronal cells, cytochrome-C oxidase (CCO), a membrane-bound protein that serves as the end-point electron acceptor in the cell respiration electron transport chain, becomes inhibited by non-covalent binding of nitric oxide. When exposed to NIR photons, the CCO releases nitric oxide, which then diffuses outs of the cell – increasing local blood flow and vasodilation.3, 4

Following initial exposure to the NIR photons, there is a brief burst of reactive oxygen species (ROS) in the neuron cell, and this activates a number of signaling pathways. The ROS leads to activation of redox-sensitive genes, and related transcription factors including NF-κβ.5, 6 The PBMT stimulates gene expression for cellular proliferation, migration, and the production of anti-inflammatory cytokines and growth factors.7

1. Karu T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 1999;49:1-17.
2. Wong-Riley MT, Liang HL, Eells JT, Chance B, Henry MM, Buchmann E, Kane M, Whelan HT. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem 2005;280:4761-4771.
3. Karu TI, Pyatibrat LV, Afanasyeva NI. Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg Med 2005;36:307-314.
4. Huang YY, Chen AC, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose Response 2009;7:358-383.
5. Migliario M, Pittarella P, Fanuli M, Rizzi M, Reno F. Laser-induced osteoblast proliferation is mediated by ROS production. Lasers Med Sci 2014;29:1463-1467.
6. Avci P, Gupta GK, Clark J, Wikonkal N, Hamblin MR. Low-level laser (light) therapy (LLLT) for treatment of hair loss. Lasers Surg Med 2014;46:144-151.
7. Huang YY, Gupta A, Vecchio D, de Arce VJ, Huang SF, Xuan W, Hamblin MR. Transcranial low level laser (light) therapy for traumatic brain injury. J Biophotonics 2012;5:827-837.

Brain (transcranial) Photobiomodulation (tPBM)


Selective photobiomodulation for emotion regulation: penetration study
Harvard Psychiatry Department, Harvard Medical School : Link ]

Red and NIR light dosimetry in the human deep brain
Institute of Chemical Sciences and Engineering, Switzerland : Link 1 ]

Photon Penetration Depth in Human Brains
The University of Southern California : Link ]

Monte Carlo analysis of the enhanced transcranial penetration using distributed near-infrared emitter array.
Institute of Biomedical Engineering, Chinese Academy of Medical Science : Link ]

Transcranial Red and Near Infrared Light Penetration in Cadavers
State University of New York Downstate Medical Center : Link ]

Quantitative analysis of transcranial and intraparenchymal light penetration in human cadaver brain tissue
Oregon Health and Science University : Link 1 ]

Cellular Effects

Photobiomodulation Directly Benefits Primary Neurons Functionally Inactivated by Toxins
Medical College of Wisconsin : [ Link ]

Neuroprotective effects of photobiomodulation : Evidence from assembly/disassembly of the Cytoskeleton
University of Sydney : [ Link ]

Photobiomodulation – mitochondrial ROS generation and calcium increase in neuronal synapses.

Novel Methods

A novel method of applying NIR light intracranially, impact on dopaminergic cell survival
University of Sydney, CEA-Leti : [ Link ]

Lin-Kou Medical Center, Taiwan : [ Link ]

Infrared neural stimulation and functional recruitment of the peripheral Nerve
Department of Biomedical Engineering, Case Western Reserve University : [ Link ]


Effect of Transcranial Low-Level Light Therapy vs Sham Therapy Among Patients With Moderate Traumatic Brain Injury
Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston : [ Link ]

Brain Photobiomodulation Therapy: a Narrative Review
Department of Medical Physics, Tabriz University of Medical Sciences : [ Link ]

Psychological benefits with near infrared light to the forehead: a pilot study on depression
The Department of Psychiatry, Harvard Medical School and the Laboratory for Psychiatric Biostatistics, McLean Hospital : [ Link ]

Cognitive Enhancement by Transcranial Photobiomodulation Is Associated With Cerebrovascular Oxygenation of the Prefrontal Cortex
Department of Psychology, Institute for Neuroscience, University of Texas : [ Link ]

Mitochondrial Dysfunction-Near-Infrared Photobiomodulation as a Potential Therapeutic Strategy
Department of Research, National Neuroscience Institute, Singapore : [ Link ]

Transcranial Photobiomodulation For The Management Of Depression: Current Perspectives
Department of Psychiatry, NYU Langone School of Medicine, New York, NY, USA : [ Link ]

Increased Functional Connectivity Within Intrinsic Neural Networks in Chronic Stroke Following Treatment With Red/Near-Infrared Transcranial Photobiomodulation
Boston University School of Medicine, Harvard Medical School : [ Link ]

Review of transcranial photobiomodulation for major depressive disorder: targeting brain metabolism, inflammation, oxidative stress, and neurogenesis
Wellman Center for Photomedicine, Massachusetts General Hospital : [ Link ]

Shining light on the head : Photobiomodulation for brain disorders
Wellman Center for Photomedicine, Massachusetts General Hospital : [ Link ]

Improved cognitive function after transcranial, light-emitting diode treatments in chronic, traumatic brain injury: two case reports
Boston University, School of Medicine : [ Link ]

Augmentation of cognitive brain functions with transcranial lasers
Department of Psychology and Institute for Neuroscience, University of Texas : Link ]

Neurological and psychological applications of transcranial lasers and LEDs
Department of Neurology and Neurotherapeutics, University of Texas : Link ]